Worksheet for Sections 8.6 and 8.7

SECTION 8.6

- 1. Suppose that the graph of f is concave downward on the interval [a, b]. Does this mean that the Trapezoidal Rule yields a number that is larger than, or a number that is smaller than, the integral $\int_{a}^{b} f(x) dx$? Draw a picture with your answer and explanation.
- 2. (a) Find the exact value A of $\int_0^1 x^3 dx$ by performing the integration.
 - (b) Approximate the integral in (a) by Simpson's Rule with n = 4, obtaining the value *B*. Tell what the relationship between *A* and *B* is, and confirm it by using (8) in the section.
 - (c) Tell why the Trapezoidal Rule with any value of n is (should be) larger than the exact value of the given integral in (a). (*Hint:* Draw a graph of the function x^3 on the appropriate interval, and appropriate line segments corresponding to the Trapezoidal Rule.) Then corroborate the assertion by obtaining the Trapezoidal Rule value C with n = 50.
- 3. Consider $\int_{-1}^{1} x^4 dx$. Find the exact value *D* of the integral and Simpson's Rule's value *E*, where n = 2. By comparing the graphs of x^2 and x^4 , tell why *D* should indeed be less than *E*.

SECTION 8.7

4. Find examples of functions f, g, and h that are continuous on $[1, \infty)$ and such that

(a)
$$\int_{1}^{\infty} f(x) dx = \infty$$
 (b) $\int_{1}^{\infty} g(x) dx = 2$ (c) $\int_{1}^{\infty} h(x) dx$ does not converge or equal ∞ or $-\infty$.

5. (a) Suppose f and g are continuous on $[a, \infty)$. Prove that if $\int_a^{\infty} f(x) dx$ and $\int_a^{\infty} g(x) dx$ both converge, then $\int_a^{\infty} (f(x) + g(x)) dx$ also converges.

(b) Prove that if
$$\int_{a}^{\infty} f(x) dx$$
 and $\int_{a}^{\infty} (f(x) + g(x)) dx$ both converge, then $\int_{a}^{\infty} g(x) dx$ converges.

(c) Give an example of f and g that are continuous on $[a, \infty)$ for which $\int_a^{\infty} (f(x)+g(x)) dx$ converges but neither $\int_a^{\infty} f(x) dx$ nor $\int_a^{\infty} g(x) dx$ converges.